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Abstract
Multi-task learning is a very challenging prob-

lem in reinforcement learning. While training

multiple tasks jointly allow the policies to share

parameters across different tasks, the optimiza-

tion problem becomes non-trivial: It is unclear

what parameters in the network should be reused

across tasks, and the gradients from different tasks

may interfere with each other. Thus, instead of

naively sharing parameters across tasks, we in-

troduce an explicit modularization technique on

policy representation to alleviate this optimization

issue. Given a base policy network, we design a

routing network which estimates different routing

strategies to reconfigure the base network for each

task. Instead of creating a concrete route for each

task, our task-specific policy is represented by a

soft combination of all possible routes. We name

this approach soft modularization. We experiment

with multiple robotics manipulation tasks in sim-

ulation and show our method improves sample

efficiency and performance over baselines by a

large margin. Our project page is at: https:
//rchalyang.github.io/SoftModule.

1. Introduction
Deep Reinforcement Learning (RL) has recently demon-

strated extraordinary capabilities in multiple domains, in-

cluding playing games (Mnih et al., 2013), visual naviga-

tion (Zhu et al., 2017) and robotic control and manipula-

tion (Lillicrap et al., 2015; Levine et al., 2016). Despite

its successful applications, deep RL still requires a large

amount of data for training, and the required sample size

increases as the task become more complex. On the other

hand, while the current deep RL methods can learn individ-

ual policies for specific tasks such as robot grasping and

pushing, it remains very challenging to train a single net-

work that generalizes across all possible robotic manipula-

tion tasks. However, if we want our trained robot to actively
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(a) Open a draw (b) Pick and place

Input State, Task Output Routing

Figure 1: We design a multi-task policy network with soft

modularization for robotics manipulation. Given different

tasks (e.g., (a) open a draw and (b) pick and place), our

network automatically estimate different routing paths to

compute a soft combination of network modules. We use

gray squares to represent the network modules and different

color lines to represent the connection weights between

modules (Darker the color indicates larger weight).

interact with a complex environment (i.e., the real world),

developing an algorithm that can learn a single model for

multiple tasks simultaneously is what we must achieve.

In this paper, we study multi-task reinforcement learning as

one step forward towards skill sharing across diverse tasks

and ultimately building robots that can generalize. By train-

ing deep networks with multiple tasks jointly, the network

can learn to share and re-use components across different

tasks, which further leads to improved sample efficiency.

This is particularly important when we want to adopt RL al-

gorithms in real-world applications. Multi-task learning also

provides a natural curriculum since learning easier tasks can

be beneficial to the learning of more challenging tasks with

shared parameters. For example, Pinto & Gupta (2017) have

shown that learning robot pushing and grasping together can

improve the sample efficiency as well as the final success

rate compared to training two tasks separately.

However, multi-task reinforcement learning remains a hard

problem. It becomes even more challenging when the num-

ber of tasks increases. For instance, it has been shown by Yu

et al. (2019) that training with diverse robot manipulation

tasks jointly with a sharing network backbone and multiple

task-specific heads for actions hurt the final performance

comparing to independent training in each task. One major

reason is that multi-task learning introduces optimization

difficulties: It is unclear how the tasks will affect each other

when trained jointly, and optimizing some tasks can bring
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negative impacts on the others (Teh et al., 2017).

To tackle this problem, the compositional model with multi-

ple modules was introduced (Andreas et al., 2017; Haarnoja

et al., 2018a). For example, Andreas et al. (2017) proposed

to train modular sub-policies and task-specific high-level

policies jointly in a Hierarchical Reinforcement Learning

(HRL) framework. The sub-policies can be shared across

different high-level policies with a learned policy composi-

tion function. By enforcing this compositional structure, the

trained networks achieve better performances than both in-

dependent task-specific policies and a full-shared multi-task

policy in a maze environment. However, HRL introduces an-

other optimization challenge on jointly training sub-policies

and high-level task-specific policies together. Specifically,

training sub-policies often require predefined tasks or some

sophisticated way to discover subgoals for policy learning.

Moreover, it may be challenging to even explicitly define

subgoals in complex robotic manipulation tasks with a con-

tinuous state space.

Instead of designing individual modules explicitly for each

sub-policy, we propose a soft modularization method in this

paper, where we generate soft combinations of different

modules for different tasks without explicitly specifying the

policy structure. By using soft modularization, our approach

learns to share modules across tasks automatically. Our ap-

proach consists of two networks: a base policy network and

a routing network. The base policy network is composed of

multiple modules. It takes the state as the input and outputs

the action depending on the task. The routing network takes

a task embedding together with the current state as input and

estimates the routing strategy. When a new task is given,

the modules in the base policy network will be reconfig-

ured by the routing network. Figure 1 visualizes different

connection configurations for different tasks. Furthermore,

instead of taking hard assignments on modules for each task

in the base network, our routing network outputs a probabil-

ity distribution over module assignments for each task. A

task-specific policy network can be viewed as a weighted

combination of the shared modules according to the prob-

ability distribution. In this way, we can directly back-prop

through the routing weights and train the routing network

and base policy network together over multiple tasks. The

advantage of our approach is that we can still modularize

the networks according to different tasks without the need

to specify policy hierarchies explicitly (e.g., HRL), which

typically leads to optimization difficulties.

We perform experiments in the Meta-World environ-

ment (Yu et al., 2019), which contains 50 different robotic

manipulation tasks. By using soft modularization, we

achieve significant improvements in both sample efficiency

and final performance over previous state-of-the-art multi-

task policies. Although our approach utilizes far less train-

ing data compared to training individual policies for each

task, our learned policy is still able to perform reasonably

close to the individually trained policies. This shows that

enforcing compositionality with soft modularization can

improve the generalization across different tasks in RL.

2. Related Work
Multi-task learning. Multi-task learning (Caruana, 1997)

is an important problem in machine learning. Researchers

have shown how learning with multiple objectives can make

different task benefit from each other in the field of computer

vision (Misra et al., 2016; Zamir et al., 2018; Kokkinos,

2017), robotics and reinforcement learning (Wilson et al.,

2007; Pinto et al., 2016; Pinto & Gupta, 2017; Riedmiller

et al., 2018; Hausman et al., 2018; Sax et al., 2019). While

sharing common parameters and structure across tasks can

intuitively improve data efficiency, gradients from different

tasks can cause negative interference on each other. This

phenomenon is more severe in the context of RL. One way

to avoid this negative interference is to use policy distil-

lation (Parisotto et al., 2015; Rusu et al., 2015; Teh et al.,

2017). For example, Teh et al. (2017) propose to share a

distilled policy capturing common properties across tasks,

and then train different task-specific policies by constrain-

ing them close to the shared policy. However, this line

of approaches still requires separate networks for different

policies and an extra distillation stage in learning.

Study on multi-task gradients. To handle the optimiza-

tion problem in multi-task learning, researchers propose

to explicitly model the similarity between gradients from

different tasks (Zhang & Yeung, 2014; Chen et al., 2017;

Kendall et al., 2018; Lin et al., 2019; Sener & Koltun, 2018;

Du et al., 2018; Yu et al., 2020; Hu et al., 2019). For exam-

ple, Chen et al. (2017) propose to normalize the gradients

from different tasks for balancing among the multi-task

losses. Besides balancing different tasks, Du et al. (2018)

propose to compute the cosine similarity between gradients

from the auxiliary task and the main task and use the sim-

ilarity to adapt auxiliary tasks. This idea is then extended

by Lin et al. (2019) to improve the sample efficiency in re-

inforcement learning. Besides adjusting the losses, Yu et al.

(2020) propose to reduce the conflicting gradient directly

after computing the gradient similarity. However, optimiza-

tion relying on the gradient similarity is usually unstable,

especially in the case where there is a large gradient variance

within each task itself.

Compositional learning. Besides focusing on the gradi-

ents, another direction is to design compositional model

with multiple modules (Singh, 1992; Devin et al., 2017;

Andreas et al., 2017; Rusu et al., 2016; Qureshi et al., 2020;

Peng et al., 2019; Haarnoja et al., 2018a; Sahni et al., 2017).

Devin et al. (2017) proposes to decompose the network poli-
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cies to task-specific and robot-specific modules for robotics

manipulation tasks, and show that they can train and test on

different combinations of modules. Motivated by this work,

Andreas et al. (2017) further extends to train sub-policies for

different subgoals and task-specific policies to combine sub-

policies in a hierarchical reinforcement learning framework.

Instead of training high- level task-specific policies, Peng

et al. (2019) introduce to learn a gating function to output

the mixture weights for composing the sub-policies. Despite

these approaches show impressive generalizability over dif-

ferent tasks, they all required to pre-define and pre-train

each individual sub-policy. This can be very challenging in

the tasks where subgoals are not well defined.

Soft modularization. Instead of learning each individual

sub-policy, our method factorizes the network into different

modules without explicitly specifying their functions, and

train a routing function to estimate a soft combination of the

modules for each task. Our work is closely related to (Rosen-

baum et al., 2017; 2019; Purushwalkam et al., 2019; Wang

et al., 2019). Rosenbaum et al. (2019) propose to train

routing policies with RL to select a model path to compose

the modules. Instead of using RL to train the routing net-

work, our soft modularization approach allows the routing

network directly to be trained with back-propagation.

3. Background
We consider a finite horizon Markov decision processe

(MDP) for each task T and there are M tasks in total, which

can be represented by a tuple (S,A, P,R,H, γ), where the

state s ∈ S and action a ∈ A are continuous. The transition

probability P (st+1|st, at) represents the stochastic transi-

tion dynamics. R(st, at) represents the reward function. H
is the horizon and γ is the discount factor. We use πφ(at|st)
to represent the policy whose network is parameterized by

φ and the goal is to learn a policy maximizing the expected

return. In the case of multi-task setting, we assume the tasks

are sampled from a distribution p(T ), and different tasks

will have different MDPs. In this paper, we train our RL

policy with Soft Actor-Critic (SAC).

3.1. Reinforcement Learning with Soft Actor-Critic

Soft Actor-Critic (Haarnoja et al., 2018b) is an off-policy

actor-critic deep reinforcement learning approach. In this

framework, the actor aims to succeed at the task and act

as randomly as possible. We consider the parameterized

state value function as Vθ(st) and the soft Q-function is

Qθ(st, at). The parameters of these networks are θ. There

are three types of parameters to optimize in SAC: The pol-

icy parameters φ, the parameters of Q-function θ and a

temperature α. The objective of policy optimization is:

Jπ(φ) = Est∼D
[
Eat∼πφ

[α log πφ(at|st)−Qθ(st, at)]
]
,

(1)

where α is a learnable temperature which is served as a

entropy penalty coefficient. It can be automatically adjusted

to maintain the entropy level of the policy. The optimization

loss for the temperature α is:

J(α) = Eat ∼ πφ

[
−α log πφ(at|st)− αH̄

]
, (2)

where H̄ is a desired minimum expected entropy. If
log πt(at|st) is optimized to increase its value, and the en-
tropy is becoming smaller, α will be adjusted to increase in
the process. The objective for learning Q-function is:

JQ(θ) = (3)

E(st,at)∼D

[
1

2

(
Qθ(st, at)−

(
R(st, at) + γEst+1∼PVθ̄(st+1)

))2]

where the value function Vθ̄ is implicitly parameterized by

the soft Q-fuction.

3.2. Multi-task Reinforcement Learning

We can easily extend SAC from single task to multi-task.

The goal here is to learn a single, task-conditioned policy

π(a|s, z), where z represents an embedding of the task in-

dex. We optimize the policy to maximize the the average

expected return across all tasks sampled from p(T ),

ET ∼p(T )[Eπ[

H∑

t=0

γtRt(st, at)]]. (4)

The objective of policy optimization for multi-task learning

can be represented as,

Jπ(φ) = ET ∼p(T ) [Jπ,T (φ)] , (5)

where Jπ,T (φ) is adopted directly from Eq. 1 with task T .

Similarly for Q-function, the objective is:

JQ(θ) = ET ∼p(T ) [JQ,T (θ)] . (6)

4. Method
We propose to perform multi-task reinforcement learning by

using a single base policy network with multiple modules.

As visualized in Figure 2, instead of finding discrete routing

paths to connect the modules for different tasks, we perform

soft modularization: we utilize another routing network (on

the right side of Figure 2) which takes the an task identity

embedding and observed state as inputs, and outputs the

probabilities to weight the modules in a soft manner.

With soft modularization, it allows task-specific policies to

learn and discover what modules to share across different

tasks. Since the soft combination process is differentiable,

both policy network and the routing network can be trained

together in an end-to-end manner. Note that the network

architecture for the soft Q-function follows the similar struc-

ture, but initialized and trained with different parameters.
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Figure 2: Our framework contains a base policy network

with multiple modules (left) and a routing network (right).

The routing network predicts L− 1 layers of probabilities

to weight the connections between different modules in the

base policy network. The soft combinations of different

modules are used to predict the action.

Although the soft modularization provides a differentiable

way to modularize and share the network across tasks, differ-

ent tasks can still learn and converge with different training

speed based on the difficulties of the tasks. For example,

learning “reaching” policy is usually much faster than learn-

ing “pick and place” policy. To tackle this problem, we

introduce a simple way to automatically adjust the losses

for different tasks to balance the training across tasks.

In the following subsections, we will first introduce our net-

work architecture with soft modularization, and then training

objective for multi-task learning with this architecture.

4.1. Soft Modularization
As shown in Figure 2, our model of multi-task policy con-

tains two networks: the base policy network and the routing

network. At each time stage, the network takes the input

of the current state st and the task embedding zT as inputs.

We use an one-hot vector for zT representing each task.

We forward st to a 2-layer MLP and obtain a D-dimension

representation f(st), which is then used as inputs for the

modules as well as the routing network. We extract the rep-

resentation for the task embedding by one fully connected

layer as h(zT ), which is also in D-dimension.

Routing Network. The depth of our routing network is

corresponding to number of module layers in the base policy

network. Supposed we have L module layers and each layer

has n modules in the base policy network. The routing

network will have L− 1 layers to output the probabilities

to weight the modules and the dimension of the probability

vector is n× n. Formally, we define the output probability

vector for the lth layer as pl ∈ R
n2

. The probability vector

for the next layer can be represented as,

pl+1 = W l
d(ReLU(W l

up
l · (f(st) · h(zT )))), (7)

where W l
u is a fully connected layer in R

D×n2

dimen-

sions, which converts the probability vector to an embedding

which has the same dimension as the task embedding rep-

resentation and observation representation. We perform

dot-product between these three embeddings to obtain a

new feature representation. We adopt the dot-product here

to combine the information from the previous probabili-

ties, the task information and observation information. This

feature is then forwarded to another fully connected layer

W l
d ∈ R

n2×D, which leads to the probability vector for

the next layer pl+1. We visualize this process on comput-

ing pl=2 from pl=1 in Figure 2. For computing the first

layer of probabilities, we use the inputs from both the task

embedding and the state representation as,

pl=1 = W l=1
d (ReLU(f(st) · h(zT ))), (8)

where f(st) is the feature representation of the state with

D dimensions. To weight the modules in the base policy

network, we use softmax function to normalize pl as,

p̂li,j =
exp (pli,j)∑n
j=1 exp (p

l
i,j)

, (9)

which is the probability of weighting the jth module in the

lth layer for contributing to the ith module in the l+1 layer.

We will illustrate how to use this probability in the base

policy network in the following.

Base Policy Network. As shown in the left side of Figure 2,

our base policy network has L layers of modules, and each

layer contains n modules. We denote that the input for

the jth module in the lth layer is a d-dimensional feature

representation glj ∈ R
d. The input feature representation

for the ith module in the l + 1 layer can be represented as,

gl+1
i =

n∑

j=1

p̂li,j(ReLU(W l
jg

l
j)), (10)

where W l
j ∈ R

d×d represents the parameters for the mod-

ule . The features for the lower layer modules are first

forwarded to different fully connected layers and a non-

linear layer (ReLU). We compute a weighted sum of these
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features by using the probability outputs from the routing

network. Recall from Eq. 9 that p̂li,j represents the probabil-

ity connecting the jth module in layer l to the ith module in

layer l + 1 and it is normalized to
∑

j p̂
l
i,j = 1.

Given the features for the modules in the last layer, we

compute the mean and variance as the outputs,

μ, σ =

n∑

j=1

WL
j gLj , (11)

where WL
j ∈ R

d×o are the parameters for the modules in

the last layer, and o represents the dimension of the outputs.

Note that although we have only introduced the network

architectures for policies so far, we adopt similar architec-

tures with soft modularization for Q-function as well. The

weights for both the base policy network and the routing

network are not shared or reused in the Q-function. During

training, we train all the parameters jointly.

4.2. Multi-task Optimization
We focus on the problem of balancing the learning across

different tasks, since different tasks are converging in differ-

ent speed (e.g., easier tasks are usually converging faster).

We propose to balance the learning by scaling the training

objectives for the policy networks with different weights for

different tasks. These weights can be learned automatically:

the objective weight will be large if the policy for a task is

not well trained and the objective weight will become small

if the confidence of the policy is high.

This loss weight is directly related to the temperature pa-

rameter α in Soft Actor-Critic, which can be trained via

Eq. 2. By optimizing Eq. 2, if the value of log πφ(at|st) is

becoming larger, which means entropy is becoming smaller,

α will become larger to encourage exploration. On the other

hand, α will become small if log πφ(at|st) is small. In our

multi-task setting, we have different temperature parameters

for M different tasks: {αi}Mi=1. The objective weights wi

for task i are proportional to the exponential of negative αi,

wi =
exp (−αi)∑M
j=1 exp (−αj)

. (12)

We adjust the optimization objective from Eq. 5 as,

Jπ(φ) = ET ∼p(T ) [wT · Jπ,T (φ)] , (13)

and the objetive for Q-fuction from Eq. 6 is adjusted as,

JQ(θ) = ET ∼p(T ) [wT · JQ,T (θ)] . (14)

5. Experiments
We perform experiments on multi-task robotics manipula-

tion. We will first discuss the experimental environment,

benchmark and baselines used, then we compare our method

with the baselines and conduct ablation study.

5.1. Environment
We evaluate our approach with the recent proposed Meta-

World (Yu et al., 2019) environment. This environment

contains 50 different robotics continuous control and ma-

nipulation tasks with a sawyer arm in the MuJoCo envi-

ronment (Todorov et al., 2012). There are two challenges

for multi-task learning in this environment: i) the MT10

challenge, which requires learning 10 manipulation tasks

simultaneously and ii) the MT50 challenge, which contains

all the 50 manipulation tasks.

Building on top of these two challenges, we further extend

the tasks to be goal-conditioned tasks. More specifically,

the original MT10 and MT50 tasks are manipulation tasks

with fixed goals. To make the tasks more realistic, we

extend the tasks to have flexible goals. For example, in

the case of reaching, instead of manipulating a robot arm

to reach one fixed location, we extend the task to ask the

robot to reach different goal location from the inputs. We

name the two extensions as MT10-Conditioned and MT50-
Conditioned tasks. To identify two variants of MT10 and

MT50, we denote the original MT10 challenge as MT10-
Fixed and the original MT50 challenge as MT50-Fixed.

5.2. Baselines and Experimental Settings
Baselines. We train our model with Soft Actor-Critic

(SAC) (Haarnoja et al., 2018b). We compare to three base-

lines with SAC without using our network architecture as

following:

• Single-task SAC: we train individual policy with SAC

for each task in the MT10-Conditioned setting.

• Multi-task SAC (MT-SAC): using a one-hot task ID

embedding together with the state as inputs.

• Multi-task multi-head SAC (MT-MH-SAC): This

baseline is built upon the previous Multi-task SAC

baseline with one independent head for each task.

The same multi-task SAC and multi-task multi-head SAC

baselines are also proposed in (Yu et al., 2019). We repro-

duce their results by following their settings.

Variants of Our Approach. We conduct all experiments

under two settings of our method for better understanding of

soft modularization. We ablate different numbers of module

layer and modules in each layer:

• Ours (Shallow): This model contains L = 2 module

layers, n = 2 modules per layer and the output for

each module is a d = 256 dimensions representation.

• Ours (Deep): We propose a variant of the model with

more module layers but maintaining same number of

parameters. We have L = 4 module layers with n = 4
modules per layer. We set the input and output for each

module a d = 128 dimensions representation.

Evaluation Metrics. We evaluate the policies based on the

success rate of executing the tasks, which is well-defined in
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(a) (b) (c) (d)

Figure 3: Sampled observation and corresponding routing visualization. Each column represents a pair of two different

tasks sharing similar routing. We highlight the shared part with blue boxes. The pair of tasks include: (a) Close Drawer and

Insert Peg; (b) Push and Close Window; (c) Reach and Pick Place. (d) Open Door and Open Drawer.

Figure 4: Routing visualization. We extract the probabilities

predicted from the routing network for different tasks and vi-

sualize with t-NSE. We can see that the routing probabilities

from different tasks are grouped in different clusters.

the Meta-World environment(Yu et al., 2019). We use the

average success rate cross tasks to measure the performance.

For each experiment, we train both our approaches and

the baselines with 3 random seeds. To plot the training

curves, we plot the success rate of the polices across time

with variance. To report the final performance, we directly

evaluate the final policy for each approach. We sample 100

episodes for each task and we repeat the same process for

each seed. We compute the success rate for all these trials

and report the averaged results.

Training samples. For fair comparison, all methods are

evaluated after convergence. For baselines, we train them

with 20 million samples on the MT10 setting and 100 mil-

lion samples on the MT50 setting. For our method with soft

modularization, it converges much faster than the baselines,

and we train it with 15 million samples for MT10 and with

50 million samples for MT50 tasks.

5.3. Routing Network Visualization
We perform visualization on the networks trained with Ours

(Deep) on the MT10-Conditioned setting.

Probability Visualization. We visualize the probabilities

pl predicted by the routing network. The Ours (Deep) model

contains l = 4 module layers with n = 4 modules on each

layer. As shown in Figure 3, we plot pl as the connections

between different modules and use deep red color to repre-

sent large probability and light red color to represent low

probability. For each column, we visualize the routing net-

works for two different tasks. We can see that even the tasks

are different, they can still share similar module connections.

This shows our soft modularization method allows the reuse

of skills across different manipulation tasks.

t-SNE Visualization. We visualize the routing probabilities

for different tasks via t-SNE (van der Maaten & Hinton,

2008) in Figure 4. We run the policy on each task in MT10-

Conditioned multiple times to collect routing data samples.

We combine all the routing probabilities from all layers

into a (l − 1)n2 = 48 dimensional vector representing the

routing path and visualize via t-SNE in Figure 4. We find

clear boundaries between tasks in routing space, indicating

that the agent can distinguish different tasks and choose the

corresponding skill set for each given task. Besides, we

notice that those tasks sharing similar task structures (e.g.,

drawer-open-v1 and drawer-close-v1, window-open-v1 and

window-close-v1) are close in the t-SNE plot.

5.4. Quantitative Results
Results on MT10-Fixed. As shown in Table 1c, our re-

implementation of multi-task multi-head SAC performs very

close to the reported results in (Yu et al., 2019). Although

the final success rate of our method is only 2% better than

our baseline, our method converges faster than the baseline,

as shown in the 2nd plot in Figure 5. The reason that we
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Method MT50-Fixed MT50-Conditioned

MT-SAC 28.8% -
MT-SAC∗ 31.4% 28.3%
MT-MH-SAC 35.9% -
MT-MH-SAC∗ 35.5% 34.2%

Ours (Shallow) 59.5% 60.4%
Ours (Deep) 60.0% 61.0%

(a) Average success rates over all tasks for MT50

Method MT50-Fixed Params layers units

MT-MH-SAC 35.9% 1.2x 3 400
MT-MH-SAC∗ 35.5% 1.2x 3 400
MT-MH-SAC-4∗ 46.7% 1.6x 4 400
MT-MH-SAC-5∗ 45.2% 2.0x 5 400
MT-MH-SAC-6∗ 45.0% 2.4x 6 400
MT-MH-SAC-4-Wide∗ 50.7% 3.3x 4 600
MT-MH-SAC-5-Wide∗ 50.3% 4.2x 5 600

Ours (Deep) 60.0% 1x - -

(b) Comparison with baselines using different number of parameters
for MT50-Fixed.Method MT10-Fixed MT10-Conditioned

MT-SAC 39.5% -
MT-SAC∗ 44.0% 42.6%
MT-MH-SAC 88.0% -
MT-MH-SAC∗ 85.0% 67.4

Ours (Shallow) 87.0% 71.8%
Ours (Deep) 86.7% 68.4%

(c) Average success rates over all tasks for MT10

Method MT10-Conditioned

Single-task SAC 78.5%
Ours (Shallow) 71.8%

(d) Comparison on average success rate between the single task
SAC policy and our multi-task policy for MT10-Conditioned.

Table 1: Comparisons on average success rates for MT10 and MT50 tasks. MT-SAC, MT-MH-SAC indicate results reported

in (Yu et al., 2019). Approaches with ∗ indicate baselines of our own implementation.

Figure 5: Training curves of four different methods on all benchmarks. The concrete lines represent the average over

different seeds and the shaded areas represent the standard variance over seeds. For MT10, our method converges much

faster than the baselines. For MT50, we achieve a large gain not only on sample efficiency but also on performance.

are not getting a significant gain in the final success rate is

that training 10 tasks with fixed goals is quite simple. We

move forward to a more practical and challenging setting

with training goal-conditioned policies.

Results on MT10-Conditioned. As task difficulty in-

creases, we can see from Table 1c that our approach (Ours

(Shallow)) achieves more than 4% improvement over the

baseline. Our approaches continue to improve the sample

efficiency over the baselines (1st plot in Figure 5).

Results on MT50-Fixed and MT50-Conditioned. When

we are moving from joint training with 10 tasks to 50

tasks, the problem becomes more challenging. As shown

in Table 1a and the last two plots in Figure 5, our

method achieves a significant improvement over the base-

line methods (around 25%) in both the fixed goal and goal-

conditioned settings. We also observe that in MT50 envi-

ronments, Ours (Deep) performs better than Ours (Shallow)

approach, while it is the opposite in the MT10 setting. The

reason for this phenomenon might be: (i) for a smaller num-

ber of task (MT10), simple network topology facilitates

more on information sharing across tasks; (ii) for larger

number of task (MT50), more complex network topology

provides more routing choices and prevents different tasks

from harming the performance of each other. It is also wor-

thy of mentioning that our method achieves better success

rates on the MT50-Conditioned environments than MT50-

Fixed. The reason is that MT50-Conditioned provides more

examples in training for better generalization.

5.5. Effects on Network Capacity
We conduct experiments to see how the capacity of the net-

work (number of parameters) can influence the performance

of the baseline methods. We compare our approach with
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(a) MT50-Conditioned (b) MT10-Conditioned (c) MT10-Conditioned

Figure 6: (a) Comparison on Ours (Deep) and baselines with different number of parameters for MT50-Conditioned. (b)

Analysing the effects of balancing training examples and using observation for routing network in Ours (Shallow) for

MT10-Conditioned. (c) Analysing the effect of balancing training examples in the baseline for MT10-Conditioned.

Figure 7: Comparison with Single Task SAC. X-axis de-

notes the number of samples from given tasks.

baselines using different numbers of parameters for MT50-

Fixed in Table 1b. We ablate different number of network

layers and the number of hidden units in each layer. We

denote MT-MH-SAC-l∗ as the multi-task multi-head SAC

baseline with l layers. We also ablate more hidden unites for

each layer and name the methods with “Wide”. The detailed

configurations for different ablations are shown in Table 1b.

We observe that even our model uses the smallest number

of parameters, we can still achieve much better results. For

example, our method is around 10% better than the baseline

(MT-MH-SAC-5-Wide∗) which has 4.2x number of parame-

ters compared to our method. We also observe that the gain

saturates very fast as we make the network larger and larger:

The baseline with 4.2x capacity is slightly worse than the

baseline with 3.3x capacity. We visualize the training curve

in Figure 6a: our method converges faster and has much

better performance than large capacity baselines.

5.6. Comparison with Single Task Policy
A substantial advantage of multi-task learning is with sam-

ple efficiency. We compare our policy with individual policy

trained for each task. We select two tasks (open door and

open window) from MT10-Conditioned and visualize the

training curves in Figure 7. For our approach, we plot the

performance obtained using the same amount of data for one

specific task as the single task policy. It shows that for each

task, using data from other tasks along with our method can

significantly improve sample efficiency, and skills learned

by the soft modular policy can be shared between tasks with

routing. Of course, the single task policy can overfit easily

given enough training examples and achieve a very good

result for one specific task. In Table 1d, we show that our

method can still perform reasonably close to the single task

policy, even we train with much fewer examples with much

fewer parameters via a shared network.

5.7. Analysing Learning Components
We analyse the importance of two learning components

in our method with MT10-Conditioned: (i) Balance the

training across different tasks by using the temperature pa-

rameters (Eq. 12); (ii) Use observation representation as the

inputs for the routing network.

We report the comparison results in Figure 6b and Figure 6c.

In Figure 6c, we ablate our method in the Ours (Shallow)

setting, and remove the balance training (Ours (Shallow, w/o

Balance)) as well as remove both the balance training and

observation inputs for the routing network (Ours (Shallow,

w/o Obs & Balance)). With our approach, we can reach

around 70% success rate across 10 tasks. If we remove one

or both learning components, the success rate is reduced by a

large margin. Thus both components play an important role

in our approach. We also add the balance training strategy

in optimizing the baseline approach in Figure 6c as MT-MH-

SAC-Balance. Interestingly, we find the baseline approach

is not affected as much with the new optimization strategy.

Thus we do not apply balance training for baselines.

6. Conclusion
In this paper, we propose multi-task reinforcement learning

with soft modularization for robotics manipulation tasks.

Our method improves the sample efficiency as well as the

success rate over the baselines by a large margin. The advan-

tage becomes more obvious when given more diverse tasks.

This shows that soft modularization allows effective sharing

and reusing network components across tasks, which opens

up future opportunities to generalize the policy to unseen

tasks in a zero-shot manner.
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